Proinflammatory Cytokines and Bile Acids Upregulate ΔNp73 Protein, an Inhibitor of p53 and p73 Tumor Suppressors
نویسندگان
چکیده
Gastroesophageal reflux disease (GERD) is the main etiological factor behind the recent rapid increase in the incidence of esophageal adenocarcinoma. During reflux, esophageal cells are exposed to bile at low pH resulting in cellular damage and inflammation, which are known to facilitate cancer development. In this study, we investigated the regulation of p73 isoform, ΔNp73α, in the reflux condition. Previous studies have reported that ΔNp73 exhibits anti-apoptotic and oncogenic properties through inhibition of p53 and p73 proteins. We found that direct exposure of esophageal cells to bile acids in an acidic environment alters the phosphorylation of ΔNp73, its subcellular localization and increases ΔNp73 protein levels. Upregulation of ΔNp73 was also observed in esophageal tissues collected from patients with GERD and Barrett's metaplasia, a precancerous lesion in the esophagus associated with gastric reflux. c-Abl, p38 MAPK, and IKK protein kinases were identified to interact in the regulation of ΔNp73. Their inhibition with chemotherapeutic agents and siRNA suppresses ΔNp73. We also found that pro-inflammatory cytokines, IL-1β and TNFα, are potent inducers of ΔNp73α, which further enhance the bile acids/acid effect. Combined, our studies provide evidence that gastroesophageal reflux alters the regulation of oncogenic ΔNp73 isoform that may facilitate tumorigenic transformation of esophageal metaplastic epithelium.
منابع مشابه
TAp73 suppresses tumor angiogenesis through repression of proangiogenic cytokines and HIF-1α activity.
The p53-family member TAp73 is known to function as a tumor suppressor and regulates genomic integrity, cellular proliferation, and apoptosis; however, its role in tumor angiogenesis is poorly understood. Here we demonstrate that TAp73 regulates tumor angiogenesis through repression of proangiogenic and proinflammatory cytokines. Importantly, loss of TAp73 results in highly vascularized tumors,...
متن کاملRelative expression of TAp73 and ΔNp73 isoforms
The transcription factor p73 belongs to the p53 family of tumour suppressors and similar to other family members, transcribed as different isoforms with opposing pro- and anti-apoptotic functions. Unlike p53, p73 mutations are extremely rare in cancers. Instead, the pro-apoptotic activities of transcriptionally active p73 isoforms are commonly inhibited by over-expression of the dominant negati...
متن کاملp73 in colorectal cancer
Colorectal cancer (CRC) is the third most common cancer in the world, with about 5000 new cases in Sweden every year. CRC is caused by mutation (inherited or acquired) in genes, by gene variants and changed expression of proteins. The primary way to achieve a curative result for CRC is to remove the tumor by surgery. To reduce risk of recurrence chemoor radiotherapy are given as a complement to...
متن کاملΔNp73 Enhances Promoter Activity of TGF-β Induced Genes
The p53 homolog p73 is frequently overexpressed in cancers. Especially the transactivation domain truncated isoform ΔNp73 has oncogenic properties and its upregulation is associated with poor patient survival. It has been shown that ΔNp73 has an inhibitory effect on the transactivation capacity of p53 and other p73 isoforms. Here, we confirm this finding but surprisingly find that ΔNp73 may als...
متن کاملDEC1 Coordinates with HDAC8 to Differentially Regulate TAp73 and ΔNp73 Expression
P73, a member of the p53 family, plays a critical role in neural development and tumorigenesis. Due to the usage of two different promoters, p73 is expressed as two major isoforms, TAp73 and ΔNp73, often with opposing functions. Here, we reported that transcriptional factor DEC1, a target of the p53 family, exerts a distinct control of TAp73 and ΔNp73 expression. In particular, we showed that D...
متن کامل